Machine Learning and Data Mining

Linear regression

Kalev Kask

Supervised learning

- Notation
- Features x
- Targets y
- Predictions \hat{y}
- Parameters θ

Linear regression

$$
\begin{aligned}
& \text { "Predictor": } \\
& \text { Evaluate line: } \\
& \qquad r=\theta_{0}+\theta_{1} x_{1} \\
& \text { return } \mathrm{r}
\end{aligned}
$$

- Define form of function $f(x)$ explicitly
- Find a good $f(x)$ within that family

Notation

$$
\hat{y}(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots
$$

Define "feature" $\mathrm{X}_{0}=1$ (constant)
Then
$\hat{y}(x)=\theta x^{T}$

$$
\begin{aligned}
& \underline{\theta}=\left[\theta_{0}, \ldots, \theta_{n}\right] \\
& \underline{x}=\left[1, x_{1}, \ldots, x_{n}\right]
\end{aligned}
$$

Measuring error

Mean squared error

- How can we quantify the error?

$$
\mathrm{MSE}, \begin{aligned}
J(\underline{\theta}) & =\frac{1}{m} \sum_{j}\left(y^{(j)}-\hat{y}\left(x^{(j)}\right)\right)^{2} \\
& =\frac{1}{m} \sum_{j}\left(y^{(j)}-\underline{\theta} \cdot \underline{x}^{(j) T}\right)^{2}
\end{aligned}
$$

- Could choose something else, of course...
- Computationally convenient (more later)
- Measures the variance of the residuals
- Corresponds to likelihood under Gaussian model of "noise"

$$
\mathcal{N}\left(y ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(y-\mu)^{2}\right\}
$$

MSE cost function

$\operatorname{MSE}, J(\underline{\theta})=\frac{1}{m} \sum_{j}\left(y^{(j)}-\hat{y}\left(x^{(j)}\right)\right)^{2}$

$$
=\frac{1}{m} \sum_{j}\left(y^{(j)}-\underline{\theta} \cdot \underline{x}^{(j) T}\right)^{2}
$$

- Rewrite using matrix form

$$
\begin{aligned}
& \underline{\theta}=\left[\theta_{0}, \ldots, \theta_{n}\right] \\
& \underline{y}=\left[y^{(1)} \ldots, y^{(m)}\right]^{T}
\end{aligned}
$$

$$
\underline{X}=\left[\begin{array}{ccc}
x_{0}^{(1)} & \ldots & x_{n}^{(1)} \\
\vdots & \ddots & \vdots \\
x_{0}^{(m)} & \ldots & x_{n}^{(m)}
\end{array}\right]
$$

$$
J(\underline{\theta})=\frac{1}{m}\left(\underline{y}^{T}-\underline{\theta} \underline{X}^{T}\right) \cdot\left(\underline{y}^{T}-\underline{\theta} \underline{X}^{T}\right)^{T}
$$

```
# Python / NumPy:
e = Y - X.dot( theta.T );
J = e.T.dot(e ) / m # = np.mean( e** 2 )
```


Visualizing the cost function

Finding good parameters

- Want to find parameters which minimize our error...
- Think of a cost "surface": error residual for that μ...

Machine Learning and Data Mining

Linear regression:

Gradient descent \& stochastic gradient descent

Kalev Kask

Gradient descent

- How to change μ to improve $\mathrm{J}(\theta)$?
- Choose a direction in which $J(\theta)$ is decreasing

Gradient descent

- How to change μ to improve $\mathrm{J}(\theta)$?
- Choose a direction in which $\mathrm{J}(\theta)$ is decreasing
- Derivative $\frac{\partial J(\theta)}{\partial \theta}$
- Positive => increasing
- Negative => decreasing

Gradient descent in more dimensions

- Gradient vector

Gradient descent

- Initialization
- Step size
- Can change as a function of iteration
- Gradient direction
- Stopping condition

Gradient for the MSE

- MSE $J(\underline{\theta})=\frac{1}{m} \sum_{j}\left(y^{(j)}-\underline{\theta} \cdot \underline{x}^{(j)^{T}}\right)^{2}$

$$
\begin{gathered}
\bullet \nabla \mathbf{J}=? \\
J(\underline{\theta})=\frac{1}{m} \sum_{j}\left(y^{(j)}-\theta_{0} \underline{x}_{0}^{(j)}-\theta_{1} \underline{x}_{1}^{(j)}-\ldots\right)^{2} \\
\begin{array}{rl}
\frac{\partial J}{\partial \theta_{0}} & =\frac{\partial}{\partial \theta_{0}} \frac{1}{m} \sum_{j}\left(e_{j}(\theta)\right)^{2} \\
= & \frac{1}{m} \sum_{j} \frac{\partial}{\partial \theta_{0}} e_{j}(\theta)=e_{\theta_{0}} y^{(j)}-\frac{\partial}{\partial \theta_{0}} \theta_{0} x_{0}^{(j)}-\frac{\partial}{\partial \theta_{0}} \theta_{1} x_{1}^{(j)}-\ldots \\
= & =-x_{0}^{(j)} \\
m & 2 e_{j}(\theta) \frac{\partial}{\partial \theta_{0}} e_{j}(\theta) \quad \text { (c) Alexander Iher }
\end{array}
\end{gathered}
$$

Gradient for the MSE

- MSE $J(\underline{\theta})=\frac{1}{m} \sum_{j}\left(y^{(j)}-\underline{\theta} \cdot \underline{x}^{(j)^{T}}\right)^{2}$

$$
\begin{aligned}
\nabla \mathbf{J} & =? \\
J(\underline{\theta}) & =\frac{1}{m} \sum_{j}\left(y^{(j)}-\theta_{0} \underline{x}_{0}^{(j)}-\theta_{1} \underline{x}_{1}^{(j)}-\ldots\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\nabla J(\underline{\theta}) & =\left[\begin{array}{lll}
\frac{\partial J}{\partial \theta_{0}} & \frac{\partial J}{\partial \theta_{1}} & \cdots
\end{array}\right] \\
& =\left[\begin{array}{lll}
\frac{2}{m} \sum_{j}-e_{j}(\theta) x_{0}^{(j)} & \frac{2}{m} \sum_{j}-e_{j}(\theta) x_{1}^{(j)} & \cdots
\end{array}\right]
\end{aligned}
$$

Gradient descent

- Initialization
- Step size
- Can change as a function of iteration
- Gradient direction
- Stopping condition

$$
\text { Initialize } \theta
$$

Do \{

$$
\theta \leftarrow \theta-\alpha \nabla_{\theta} \mathrm{J}(\theta)
$$

$\}$ while $(\alpha|\mid \nabla J \|>\varepsilon)$

$$
\begin{gathered}
J(\underline{\theta})=\frac{1}{m} \sum_{j}\left(y^{(j)}-\underline{\theta} \cdot \underline{x}^{(j)^{T}}\right)^{2} \\
\nabla J(\underline{\theta})=-\frac{2}{m} \sum_{j}(\underbrace{y^{(j)}-\underline{\theta}}_{\begin{array}{c}
\text { Error magnitude \& } \\
\text { direction for datum } \mathbf{j}
\end{array}} \cdot \underbrace{()^{T}}_{\begin{array}{c}
\text { Sensitivity to } \\
\text { each } \theta_{\mathbf{i}}
\end{array}}) \cdot[\underbrace{(j)}_{0} x_{1}^{(j)} \ldots]
\end{gathered}
$$

Derivative of MSE

$$
\nabla J(\underline{\theta})=-\frac{2}{m} \sum_{j}(\underbrace{y^{(j)}-\underline{\theta}}_{\begin{array}{c}
\text { Error magnitude } \& \\
\text { direction for datum } \mathbf{j}
\end{array}} \cdot \underbrace{\underline{x}^{(j)^{T}}}_{\substack{\text { Sensitivity to } \\
\text { each } \theta_{\mathbf{i}}}}) \cdot[\underbrace{x_{0}^{(j)} x_{1}^{(j)}}_{0} \ldots]
$$

- Rewrite using matrix form

$$
\begin{aligned}
& \underline{\theta}=\left[\theta_{0}, \ldots, \theta_{n}\right] \\
& \underline{y}=\left[y^{(1)} \ldots, y^{(m)}\right]^{T}
\end{aligned}
$$

$$
\underline{X}=\left[\begin{array}{ccc}
x_{0}^{(1)} & \ldots & x_{n}^{(1)} \\
\vdots & \ddots & \vdots \\
x_{0}^{(m)} & \ldots & x_{n}^{(m)}
\end{array}\right]
$$

$$
\nabla J(\underline{\theta})=-\frac{2}{m}\left(\underline{y}^{T}-\underline{\theta X}^{T}\right) \cdot \underline{X}
$$

$$
\begin{aligned}
& \mathrm{e}=\mathrm{Y}-\mathrm{X} . \operatorname{dot}(\text { theta.T }) \text {; \# error residual } \\
& \mathrm{DJ}=-\mathrm{e} . \operatorname{dot}(\mathrm{X})^{*} 2.0 / \mathrm{m} \text { \# compute the gradient } \\
& \text { theta -= alpha * DJ } \quad \text { \# take a step }
\end{aligned}
$$

Gradient descent on cost function

Comments on gradient descent

- Very general algorithm
- we'll see it many times
- Local minima
- Sensitive to starting point

Comments on gradient descent

- Very general algorithm
- we'll see it many times
- Local minima
- Sensitive to starting point
- Step size
- Too large? Too small? Automatic ways to choose?
- May want step size to decrease with iteration
- Common choices:
- Fixed
- Linear: C/(iteration)
- Line search / backoff (Armijo, etc.)
- Newton' s method

Newton's method

- Want to find the roots of $f(x)$
- "Root": value of x for which $f(x)=0$
- Initialize to some point x

- Compute the tangent at x \& compute where it crosses x -axis

$$
\nabla f(z)=\frac{0-f(z)}{z^{\prime}-z} \quad \Rightarrow \quad z^{\prime}=z-\frac{f(z)}{\nabla f(z)}
$$

- Optimization: find roots of $\nabla \mathrm{J}(\theta)$

$$
\nabla \nabla J(\theta)=\frac{0-\nabla J(\theta)}{\theta^{\prime}-\theta} \Rightarrow \quad \theta^{\prime}=\theta-\frac{\nabla J(\theta)}{\nabla \nabla J(\theta)} \text { ("Step size" }{ }^{2}=1 / \nabla \nabla J ; \text { inverse curvature) }
$$

- Does not always converge; sometimes unstable
- If converges, usually very fast
- Works well for smooth, non-pathological functions, locally quadratic
- For n large, may be computationally hard: $O\left(n^{2}\right)$ storage, $O\left(n^{3}\right)$ time

Stochastic / Online gradient descent

- MSE

$$
J(\underline{\theta})=\frac{1}{m} \sum_{j} J_{j}(\underline{\theta}), \quad J_{j}(\underline{\theta})=\left(y^{(j)}-\underline{\theta} \cdot \underline{x}^{(j)^{T}}\right)^{2}
$$

- Gradient
$\nabla J(\underline{\theta})=\frac{1}{m} \sum_{j} \nabla J_{j}(\underline{\theta}) \quad \nabla J_{j}(\underline{\theta})=\left(y^{(j)}-\underline{\theta}\right.$
- Stochastic (or "online") gradient descent:
- Use updates based on individual datum j , chosen at random
- At optima, $\quad \mathbb{E}\left[\nabla J_{j}(\underline{\theta})\right]=\nabla J(\underline{\theta})=0$
(average over the data)

Online gradient descent

- Update based on each datum at a time
- Find residual and the gradient of its part of the error \& update

$$
\begin{aligned}
& \text { Initialize } \boldsymbol{\theta} \\
& \text { Do \{ } \\
& \text { for } j=1: m \\
& \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} \mathrm{J}_{\mathrm{j}}(\boldsymbol{\theta}) \\
& \} \text { while (not done) }
\end{aligned}
$$

Online gradient descent

- Update based on each datum at a time
- Find residual and the gradient of its part of the error \& update

$$
\begin{aligned}
& \text { Initialize } \boldsymbol{\theta} \\
& \text { Do }\{ \\
& \text { for } j=1: m \\
& \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} \mathrm{J}_{\mathrm{j}}(\boldsymbol{\theta}) \\
& \} \text { while (not done) }
\end{aligned}
$$

Online gradient descent

- Update based on each datum at a time
- Find residual and the gradient of its part of the error \& update

$$
\begin{aligned}
& \text { Initialize } \boldsymbol{\theta} \\
& \text { Do \{ } \\
& \text { for } j=1: m \\
& \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} \mathrm{J}_{\mathrm{j}}(\boldsymbol{\theta}) \\
& \} \text { while (not done) }
\end{aligned}
$$

Online gradient descent

- Update based on each datum at a time
- Find residual and the gradient of its part of the error \& update

$$
\begin{aligned}
& \text { Initialize } \boldsymbol{\theta} \\
& \text { Do \{ } \\
& \text { for } j=1: m \\
& \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} \mathrm{J}_{\mathrm{j}}(\boldsymbol{\theta}) \\
& \} \text { while (not done) }
\end{aligned}
$$

Online gradient descent

- Update based on each datum at a time
- Find residual and the gradient of its part of the error \& update

$$
\begin{aligned}
& \text { Initialize } \boldsymbol{\theta} \\
& \text { Do \{ } \\
& \text { for } j=1: m \\
& \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} \mathrm{J}_{\mathrm{j}}(\boldsymbol{\theta}) \\
& \} \text { while (not done) }
\end{aligned}
$$

Online gradient descent

- Update based on each datum at a time
- Find residual and the gradient of its part of the error \& update

$$
\begin{aligned}
& \text { Initialize } \boldsymbol{\theta} \\
& \text { Do }\{ \\
& \text { for } j=1: m \\
& \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} \mathrm{J}_{\mathrm{j}}(\boldsymbol{\theta}) \\
& \} \text { while (not done) }
\end{aligned}
$$

Online gradient descent

$$
\begin{aligned}
J_{j}(\underline{\theta}) & =\left(y^{(j)}-\underline{\theta} \cdot \underline{x}^{(j)^{T}}\right)^{2} \\
\nabla J_{j}(\underline{\theta}) & =-2\left(y^{(j)}-\underline{\theta} \cdot \underline{x}^{(j)^{T}}\right) \cdot\left[x_{0}^{(j)} x_{1}^{(j)} \ldots\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Initialize } \boldsymbol{\theta} \\
& \text { Do \{ } \\
& \text { for } j=1: m \\
& \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} \mathrm{J}_{\mathrm{j}}(\boldsymbol{\theta}) \\
& \} \text { while (not converged) }
\end{aligned}
$$

- Benefits
- Lots of data = many more updates per pass
- Computationally faster
- Drawbacks
- No longer strictly "descent"
- Stopping conditions may be harder to evaluate
(Can use "running estimates" of J(.), etc.)
- Related: mini-batch updates, etc.

Machine Learning and Data Mining

Linear regression: direct minimization

Kalev Kask

MSE Minimum

- Consider a simple problem
- One feature, two data points
- Two unknowns: θ_{0}, θ_{1}
- Two equations:

$$
\begin{aligned}
& y^{(1)}=\theta_{0}+\theta_{1} x^{(1)} \\
& y^{(2)}=\theta_{0}+\theta_{1} x^{(2)}
\end{aligned}
$$

- Can solve this system directly:

$$
\underline{y}^{T}=\underline{\theta} \underline{X}^{T} \quad \Rightarrow \quad \underline{\hat{\theta}}=y^{T}\left(\underline{X}^{T}\right)^{-1}
$$

- However, most of the time, $m>n$
- There may be no linear function that hits all the data exactly
- Instead, solve directly for minimum of MSE function

MSE Minimum

$$
\nabla J(\underline{\theta})=-\frac{2}{m}\left(\underline{y}^{T}-\underline{\theta X^{T}}\right) \cdot \underline{X}=\underline{0}
$$

- Reordering, we have

$$
\begin{aligned}
& \underline{y}^{T} \underline{X}-\underline{\theta X^{T}} \cdot \underline{X}=\underline{0} \\
& \underline{y}^{T} \underline{X}=\underline{\theta X}^{T} \cdot \underline{X} \\
& \underline{\theta}=\underline{y}^{T} \underline{X}\left(\underline{X}^{T} \underline{X}\right)^{-1}
\end{aligned}
$$

- $X\left(X^{\top} X\right)^{-1}$ is called the "pseudo-inverse"
- If X^{\top} is square and independent, this is the inverse
- If $m>n$: overdetermined; gives minimum MSE fit

Python MSE

- This is easy to solve in Python / NumPy...

```
    0}=\mp@subsup{\underline{y}}{}{T}\underline{X}(\mp@subsup{\underline{X}}{}{T}\underline{X}\mp@subsup{)}{}{-1
# y = np.matrix( [[y1], ... , [ym]] )
# X = np.matrix( [[x1_0 ... x1_n], [x2_0 ... x2_n], ...] )
# Solution 1: "manual"
    th = Y.T * X * np.linalg.inv(X.T * X);
# Solution 2: "least squares solve"
    th = np.linalg.lstsq(X, Y);
```


Normal equations

$$
\nabla J(\underline{\theta})=0 \quad \Rightarrow \quad\left(\underline{y}^{T}-\underline{\theta} \underline{X}^{T}\right) \cdot \underline{X}=\underline{0}
$$

- Interpretation:
$-(\mathrm{y}-\theta \mathrm{X})=\left(\mathrm{y}-\mathrm{y}^{\wedge}\right)$ is the vector of errors in each example
- X are the features we have to work with for each example
- Dot product = 0: orthogonal

$$
\begin{aligned}
\underline{y}^{T} & =\left[y^{(1)} \ldots y^{(m)}\right] \\
\underline{x}_{i} & =\left[x_{i}^{(1)} \ldots x_{i}^{(m)}\right]
\end{aligned}
$$

Normal equations

$\nabla J(\underline{\theta})=0 \quad \Rightarrow \quad\left(\underline{y}^{T}-\underline{\theta X}^{T}\right) \cdot \underline{X}=\underline{0}$

- Interpretation:
$-(\mathrm{y}-\theta \mathrm{X})=\left(\mathrm{y}-\mathrm{y}^{\wedge}\right)$ is the vector of errors in each example
- X are the features we have to work with for each example
- Dot product = 0: orthogonal
- Example:

$$
\begin{aligned}
\underline{y} & =\left[\begin{array}{lll}
1 & 3 & 3
\end{array}\right]^{T} \\
\underline{x}_{0} & =\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]^{T} \quad \theta=\left[\begin{array}{ll}
1.00 & 0.57
\end{array}\right] \\
\underline{x}_{1} & =\left[\begin{array}{lll}
1 & 2 & 4
\end{array}\right]^{T} \\
\underline{e} & =(y-\hat{y})=\left[\begin{array}{lll}
-0.57 & 0.85 & -0.28
\end{array}\right]^{T}
\end{aligned}
$$

Effects of MSE choice

- Sensitivity to outliers

(c) Alexander Ihler

L1 error

(c) Alexander Ihler

Cost functions for regression

$$
\begin{align*}
\ell_{2} & :(y-\hat{y})^{2} \tag{MSE}\\
\ell_{1} & :|y-\hat{y}| \tag{MAE}
\end{align*}
$$

Something else entirely...
$c-\log \left(\exp \left(-(y-\hat{y})^{2}\right)+c\right)$ (???)
"Arbitrary" functions can' t be solved in closed form...

$\leftarrow(y-\hat{y}) \rightarrow$

- use gradient descent

Machine Learning and Data Mining

Linear regression: nonlinear features

Kalev Kask

More dimensions?

$$
\hat{y}(x)=\underline{\theta} \cdot \underline{x}^{T}
$$

$$
\begin{aligned}
& \underline{\theta}=\left[\begin{array}{lll}
\theta_{0} & \theta_{1} & \theta_{2}
\end{array}\right] \\
& \underline{x}=\left[\begin{array}{lll}
1 & x_{1} & x_{2}
\end{array}\right]
\end{aligned}
$$

Nonlinear functions

- What if our hypotheses are not lines?
- Ex: higher-order polynomials

Nonlinear functions

- Single feature x, predict target y :
$D=\left\{\left(x^{(j)}, y^{(j)}\right)\right\}$
\Downarrow nutaw
$D=\left\{\left(\left[x^{(j)},\left(x^{(j)}\right)^{2},\left(x^{(j)}\right)^{3}\right], y^{(j)}\right)\right\}$

$$
\hat{y}(x)=\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\theta_{3} x^{3}
$$

$$
\Downarrow
$$

$$
\hat{y}(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{3}
$$ Linear regression in new features

- Sometimes useful to think of "feature transform"

$$
\Phi(x)=\left[1, x, x^{2}, x^{3}, \ldots\right] \quad \hat{y}(x)=\underline{\theta} \cdot \Phi(x)
$$

Higher-order polynomials

- Fit in the same way
- More "features"

Features

- In general, can use any features we think are useful
- Other information about the problem
- Sq. footage, location, age, ...
- Polynomial functions
- Features $\left[1, x, x^{2}, x^{3}, \ldots\right]$
- Other functions
$-1 / x, \operatorname{sqrt}(x), x_{1}{ }^{*} x_{2}, \ldots$
- "Linear regression" = linear in the parameters
- Features we can make as complex as we want!

Higher-order polynomials

- Are more features better?
- "Nested" hypotheses
- $2^{\text {nd }}$ order more general than $1^{\text {st }}$,
- $3^{\text {rd }}$ order " " than $2^{\text {nd }}, \ldots$
- Fits the observed data better

Overfitting and complexity

- More complex models will always fit the training data better
- But they may "overfit" the training data, learning complex relationships that are not really present

Test data

- After training the model
- Go out and get more data from the world
- New observations (x, y)
- How well does our model perform?

(c) Alexander Ihler

Training versus test error

Plot MSE as a function of
model complexity

- Polynomial order
- Decreases
- More complex function fits training data better
- What about new data?
- $0^{\text {th }}$ to $1^{\text {st }}$ order
- Error decreases
- Underfitting
- Higher order
- Error increases
- Overfitting

Machine Learning and Data Mining

Linear regression: bias and variance

Kalev Kask

Inductive bias

- The assumptions needed to predict examples we haven't seen
- Makes us "prefer" one model over another
- Polynomial functions; smooth functions; etc
- Some bias is necessary for learning!

Bias \& variance

"The world"

Three different possible data sets:

Bias \& variance

Three different possible data sets:

(c) Alexander Ihler

Detecting overfitting

- Overfitting effect
- Do better on training data than on future data
- Need to choose the "right" complexity
- One solution: "Hold-out" data
- Separate our data into two sets
- Training
- Test
- Learn only on training data
- Use test data to estimate generalization quality
- Model selection
- All good competitions use this formulation
- Often multiple splits: one by judges, then another by you

What to do about under/overfitting?

- Ways to increase complexity?
- Add features (e.g. higher polynomial), parameters
- We'll see more...
- Ways to decrease complexity?
- Remove features ("feature selection") (e.g. lower polynomial)
- "Fail to fully memorize data"
- Partial training
- Regularization

Machine Learning and Data Mining

Linear regression: regularization

Kalev Kask

Linear regression

- Linear model, two data
- Quadratic model, two data?

- Infinitely many settings with zero error
- How to choose among them?
- Higher order coefficents $=0$?
- Uses knowledge of where features came from...

- Could choose e.g. minimum magnitude:

$$
\min \underline{\theta}^{T} \quad \text { s.t. } \quad J(\underline{\theta})=0
$$

- A type of bias: tells us which models to prefer

Regularization

- Can modify our cost function J to add "preference" for certain parameter values

$$
J(\underline{\theta})=\frac{1}{2}\left(\underline{y}-\underline{\theta} \underline{X}^{T}\right) \cdot\left(\underline{y}-\underline{\theta} \underline{X}^{T}\right)^{T}+\alpha \theta \theta^{T}
$$

- New solution (derive the same way)

$$
\underline{\theta}=\underline{y} \underline{X}\left(\underline{X}^{T} \underline{X}+\alpha I\right)^{-1}
$$

- Problem is now well-posed for any degree
- Notes:
- "Shrinks" the parameters toward zero
- Alpha large: we prefer small theta to small MSE
- Regularization term is independent of the data: paying more attention reduces our model variance

Regularization

- Compare between unreg. \& reg. results

Different regularization functions

- More generally, for the L_{p} regularizer: $\left(\sum_{i}\left|\theta_{i}\right|^{p}\right)^{\frac{1}{p}}$

Isosurfaces: $\|\boldsymbol{\theta}\|_{\mathrm{p}}=$ constant

$\mathrm{p}=0.5$

$\mathrm{p}=1$
Lasso

$\mathrm{p}=2$

$\mathrm{p}=4$

Quadratic
$\mathrm{L}_{0}=$ limit as p-> 0 : "number of nonzero weights", a natural notion of complexity
L $\infty=$ limit as p $->\infty$: "maximum parameter value"

Regularization: L1 vs L2

- Estimate balances data term \& regularization term

Regularization: L1 vs L2

- Estimate balances data term \& regularization term
- Lasso tends to generate sparser solutions than a quadratic regularizer.

Data term only:
all θ_{i} non-zero

Regularized estimate:
some θ_{i} may be zero

Machine Learning and Data Mining

Linear regression: hold-out, cross-validation

Kalev Kask

Model selection

- Which of these models fits the data best?
- $p=0$ (constant); $p=1$ (linear); $p=3$ (cubic); ...
- Or, should we use KNN? Other methods?
- Model selection problem
- Can't use training data to decide (esp. if models are nested!)
- Want to estimate $\mathbb{E}_{(x, y)}[J(y, \hat{y}(x ; D))]$
$\mathrm{J}=$ loss function (MSE)
$\mathrm{D}=$ training data set

Hold-out method

- Validation data
- "Hold out" some data for evaluation (e.g., 70/30 split)
- Train only on the remainder
- Some problems, if we have few data:
- Few data in hold-out: noisy estimate of the error
- More hold-out data leaves less for training!

Training data	$\mathbf{x}^{(i)}$	$\mathbf{y}^{(i)}$
	88	79
	32	-2
	27	30
	68	73
	7	-16
	20	43
Validation data	53	77
	17	16
	87	94

Cross-validation method

- K-fold cross-validation
- Divide data into K disjoint sets
- Hold out one set (= M / K data) for evaluation
- Train on the others ($=\mathrm{M}^{*}(\mathrm{~K}-1) / \mathrm{K}$ data)

Split 1:
MSE $=331.8$

Split 2:
MSE $=361.2$

Split 3:
MSE $=669.8$

$\mathbf{x}^{(\mathbf{i})}$	$\mathbf{y}^{(\mathbf{i})}$
88	79
32	-2
27	30
68	73
7	-16
20	43
53	77
17	16
87	94

Cross-validation method

- K-fold cross-validation
- Divide data into K disjoint sets
- Hold out one set (= M / K data) for evaluation
- Train on the others $\left(=M^{*}(K-1) / K\right.$ data)

$\begin{array}{lr}\text { Split 1: } & \\ \text { MSE = 280.5 } & \begin{array}{c}\text { Training } \\ \text { data }\end{array} \\ \begin{array}{ll}\text { Split 2: } & \begin{array}{c}\text { Validation } \\ \text { MSE }=3081.3\end{array} \\ \text { data }\end{array} \\ \begin{array}{ll}\text { Split 3: } \\ \text { MSE }=1640.1\end{array} & \begin{array}{c}\text { 3-Fold X-Val MSE } \\ =1667.3\end{array}\end{array}$

$\mathbf{x}^{(\mathbf{i})}$	$\mathbf{y}^{(\mathbf{i})}$
88	79
32	-2
27	30
68	73
7	-16
20	43
53	77
17	16
87	94

Cross-validation

- Advantages:
- Lets us use more (M) validation data
(= less noisy estimate of test performance)
- Disadvantages:
- More work
- Trains K models instead of just one
- Doesn't evaluate any particular predictor
- Evaluates K different models \& averages
- Scores hyperparameters / procedure, not an actual, specific predictor!
- Also: still estimating error for $\mathrm{M}^{\prime}<\mathrm{M}$ data...

Learning curves

- Plot performance as a function of training size
- Assess impact of fewer data on performance

Ex: MSEO - MSE (regression)
or 1-Err (classification)

- Few data
- More data significantly improve performance

- Performance saturates
- If slope is high, decreasing m (for validation / cross-validation) might have a big impact...

Leave-one-out cross-validation

- When K=M (\# of data), we get
- Train on all data except one
- Evaluate on the left-out data
- Repeat M times (each data point held out once) and average

Cross-validation Issues

- Need to balance:
- Computational burden (multiple trainings)
- Accuracy of estimated performance / error
- Single hold-out set:
- Estimates performance with $\mathrm{M}^{\prime}<\mathrm{M}$ data (important? learning curve?)
- Need enough data to trust performance estimate
- Estimates performance of a particular, trained learner
- K-fold XVal
- K times as much work, computationally
- Better estimates, still of performance with $M^{\prime}<M$ data
- LOO XVal
- M times as much work, computationally
$-M^{\prime} \approx M$, but overall error estimate may have high variance

